Разница между векторной и скалярной величиной

Скалярное произведение векторов: теория и решения задач

Разница между векторной и скалярной величиной

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Почему скалярное произведение векторов называется именно скалярным и что представляет собой? Чем оно отличается от результатов других операций над векторами? Что такое скаляр? Скаляр – это число.

И скалярное произведение векторов – это тоже число. Этим оно и отличается от уже рассмотренной суммы векторов, и от векторного произведения векторов, которое ещё предстоит рассмотреть.

В отличие от скалярного произведения, сумма векторов – это вектор, и векторное произведение – тоже вектор.

Определение 1. Скалярным произведением векторов называется число (скаляр), равное произведению длин (модулей) этих векторов на косинус угла между ними. Формула скалярного произведения векторов согласно определению 1:    (1)

Можно встретить и другое название этой операции: внутреннее произведение.

Скалярное произведение вектора на себя называется скалярным квадратом.

На этом уроке будем решать распространённые задачи не только на непосредственное вычисление скалярного произведения, но и на выяснение ортогональности (перпендикулярности) векторов, вида угла (тупой, острый, прямой) между векторами, вычисление скалярного произведения векторов, которые даны в координатах, вычисление длин диагоналей параллелограма, построенного на вектора. Но все по порядку. Перед каждым видом задач будем обращать внимание на то, что на этот счёт гласит теория. По ходу урока вам пригодится онлайн-калькулятор для проверки решения задач на скалярное произведение векторов.

Если в задаче и длины векторов, и угол между ними преподнесены “на блюдечке с голубой каёмочкой”, то условие задачи и её решение выглядят так:

Пример 1. Даны векторы . Найти скалярное произведение векторов , если их длины и угол между ними представлены следующими значениями:

Решение:

Справедливо и другое определение, полностью равносильное определению 1.

Определение 2. Скалярным произведением векторов называется число (скаляр), равное произведению длины одного их этих векторов на проекцию другого вектора на ось, определяемую первым из указанных векторов. Формула согласно определению 2:

   (2)

или

   (3)

Задачу с применением этой формулы решим после следующего важного теоретического пункта.

Определение скалярного произведения векторов через координаты

То же самое число можно получить, если перемножаемые векторы заданы своими координатами.

Определение 3.Скалярное произведение векторов – это число, равное сумме попарных произведений их соответствующих координат.

На плоскости

Если два вектора и на плоскости определены своими двумя декартовыми прямоугольными координатами

и

,

то скалярное произведение этих векторов равно сумме попарных произведений их соответствующих координат:

.

Пример 2. Найти численную величину проекции вектора на ось, параллельную вектору .

Решение. Находим скалярное произведение векторов, складывая попарные произведения их координат:

.

Теперь нам требуется приравнять полученное скалярное произведение произведению длины вектора на проекцию вектора на ось, параллельную вектору (в соответствии с формулой ).

Находим длину вектора как квадратный корень из суммы квадратов его координат:

.

Составляем уравнение и решаем его:

Ответ. Искомая численная величина равна минус 8.

Для самопроверки можно использовать онлайн калькулятор Скалярное произведение векторов и косинус угла между ними.

В пространстве

Если два вектора и в пространстве определены своими тремя декартовыми прямоугольными координатами

и

,

то скалярное произведение этих векторов также равно сумме попарных произведений их соответствующих координат, только координат уже три:

.

Задача на нахождение скалярного произведения рассмотренным способом – после разбора свойств скалярного произведения. Потому что в задаче потребуется определить, какой угол образуют перемножаемые векторы.

Свойства скалярного произведения векторов

1.   (переместительное свойство: от перемены местами перемножаемых векторов величина их скалярного произведения не меняется).

2.   (сочетательное относительно числового множителя свойство: скалярное произведение вектора, умноженного на некоторый множитель, и другого вектора, равно скалярному произведению этих векторов, умноженному на тот же множитель).

3.   (распределительное относительно суммы векторов свойство: скалярное произведение суммы двух векторов на третий вектор равно сумме скалярных произведений первого вектора на третий вектор и второго вектора на третий вектор).

4. (скалярный квадрат вектора больше нуля), если – ненулевой вектор, и , если – нулевой вектор.

В определениях изучаемой операции мы уже касались понятия угла между двумя векторами. Пора уточнить это понятие.

На рисунке выше видны два вектора, которые приведены к общему началу. И первое, на что нужно обратить внимание: между этими векторами существуют два угла – φ1 и φ2.

Какой из этих углов фигурирует в определениях и свойствах скалярного произведения векторов? Сумма рассмотренных углов равна 2π и поэтому косинусы этих углов равны. В определение скалярного произведения входит только косинус угла, а не значение его выражения.

Но в свойствах рассматривается только один угол. И это тот из двух углов, который не превосходит π, то есть 180 градусов. На рисунке этот угол обозначен как φ1.

1. Два вектора называют ортогональными и угол между этими векторами – прямой (90 градусов или π/2), если скалярное произведение этих векторов равно нулю:

.

Ортогональностью в векторной алгебре называется перпендикулярность двух векторов.

2. Два ненулевых вектора составляют острый угол (от 0 до 90 градусов, или, что тоже самое – меньше π/2) тогда и только тогда, когда их скалярное произведение положительно.

3. Два ненулевых вектора составляют тупой угол (от 90 до 180 градусов, или, что то же самое – больше π/2) тогда и только тогда, когда их скалярное произведение отрицательно.

Пример 3. В координатах даны векторы:

.

Вычислить скалярные произведения всех пар данных векторов. Какой угол (острый, прямой, тупой) образуют эти пары векторов?

Решение. Вычислять будем путём сложения произведений соответствующих координат.

.

Получили отрицательное число, поэтому векторы образуют тупой угол.

.

Получили положительное число, поэтому векторы образуют острый угол.

.

Получили положительное число, поэтому векторы образуют острый угол.

.

Получили нуль, поэтому векторы образуют прямой угол.

.

Получили положительное число, поэтому векторы образуют острый угол.

.

Получили положительное число, поэтому векторы образуют острый угол.

Для самопроверки можно использовать онлайн калькулятор Скалярное произведение векторов и косинус угла между ними.

Пример 4. Даны длины двух векторов и угол между ними:

.

Определить, при каком значении числа векторы и ортогональны (перпендикулярны).

Решение. Перемножим векторы по правилу умножения многочленов:

.

Теперь вычислим каждое слагаемое:

.

Составим уравнение (равенство произведения нулю), приведём подобные члены и решим уравнение:

Ответ: мы получили значение λ = 1,8, при котором векторы ортогональны.

Пример 5. Доказать, что вектор ортогонален (перпендикулярен) вектору

Решение. Чтобы проверить ортогональность, перемножим векторы и как многочлены, подставляя вместо его выражение, данное в условии задачи:

.

Для этого нужно каждый член (слагаемое) первого многочлена умножить на каждый член второго и полученные произведения сложить:

.

В полученном результате дробь за счёт сокращается. Получается следующий результат:

.

Вывод: в результате умножения получили нуль, следовательно, ортогональность (перпендикулярность) векторов доказана.

Решить задачу самостоятельно, а затем посмотреть решение

Для самопроверки можно использовать онлайн калькулятор Скалярное произведение векторов и косинус угла между ними.

Матричное представление скалярного произведения векторов и произведение n-мерных векторов

Иногда выигрышным для наглядности является представление двух перемножаемых векторов в виде матриц. Тогда первый вектор представлен в виде матрицы-строки, а второй – в виде матрицы-столбца:

Тогда скалярное произведение векторов будет произведением этих матриц:

Результат тот же, что и полученный способом, который мы уже рассмотрели. Получили одно единственное число, и произведение матрицы-строки на матрицу-столбец также является одним единственным числом.

В матричной форме удобно представлять произведение абстрактных n-мерных векторов. Так, произведение двух четырёхмерных векторов будет произведением матрицы-строки с четырьмя элементами на матрицу-столбец также с четырьмя элементами, произведение двух пятимерных векторов – произведением матрицы-строки с пятью элементами на матрицу-столбец также с пятью элементами и так далее.

Пример 7. Найти скалярные произведения пар векторов

и

,

используя матричное представление.

Решение. Первая пара векторов. Представляем первый вектор в виде матрицы-строки, а второй – в виде матрицы-столбца. Находим скалярное произведение этих векторов как произведение матрицы-строки на матрицу-столбец:

Аналогично представляем вторую пару и находим:

Как видим, результаты получились те же, что и у тех же пар из примера 2.

Угол между двумя векторами

Вывод формулы косинуса угла между двумя векторами очень красив и краток.

Чтобы выразить скалярное произведение векторов

                              (1)

в координатной форме, предварительно найдём скалярные произведение ортов. Скалярное произведение вектора на само себя по определению:

То, что записано в формуле выше, означает: скалярное произведение вектора на самого себя равно квадрату его длины. Косинус нуля равен единице, поэтому квадрат каждого орта будет равен единице:

Так как векторы

попарно перпендикулярны, то попарные произведения ортов будут равны нулю:

Теперь выполним умножение векторных многочленов:

Подставляем в правую часть равенства значения соответствующих скалярных произведений ортов:

Получаем формулу косинуса угла между двумя векторами:

Пример 8. Даны три точки A(1;1;1), B(2;2;1), C(2;1;2).

Найти угол .

Решение. Находим координаты векторов:

,

.

По формуле косинуса угла получаем:

Следовательно, .

Для самопроверки можно использовать онлайн калькулятор Скалярное произведение векторов и косинус угла между ними.

Пример 9. Даны два вектора

и

Найти сумму, разность, длину, скалярное произведение и угол между ними.

Решение.

1.Сумма

2.Разность

3.Длина

4.Скалярное произведение

5.Угол между и :

Решить задачи самостоятельно, а затем посмотреть решения

Для самопроверки можно использовать онлайн калькулятор Скалярное произведение векторов и косинус угла между ними.

Пример 13. Среди векторов

Найти а) коллинеарные; б) ортогональные.

Решение.

а) проверим пропорциональность соответствующих координат векторов – условие коллинеарности (повторение материала предыдущей части темы “Векторы”).

Для векторов и :

Равенство не выполняется.

Для векторов и :

Равенство выполняется.

Для векторов и :

Равенство не выполняется.

Наше исследование показало, что коллинеарны векторы и .

б) найдём скалярные произведения векторов.

Наше исследование показало, что ортогональны векторы и и и .

Расчёт работы постоянной силы

Посмотрите ещё раз на рисунок в начале статьи. Пусть материальная точка перемещается прямолинейно из начала координат в конец вектора B под действием постоянной силы F = A, образующей угол с перемещением S = A.

Из физики известно, что работа силы F при перемещении S равна .

Таким образом, работа постоянной силы при прямолинейном перемещении её точки приложения равна скалярному произведению вектора силы F = B на вектор перемещения S = A.

Скалярное произведение векторов позволяет находить угол между двумя векторами. Поэтому оно часто встречается в последующих разделах математики, особенно, аналитической геометрии.

Стоит ли говорить о том, что нахождение скалярного произведения векторов – фундаментальный навык для любого будущего инженера, проектирующего всё что угодно, от гладильных досок и лестниц-стремянок до зданий, или для программиста, собирающегося разрабатывать игры?

Экономический смысл скалярного произведения векторов

В экономических задачах можно рассматривать скалярное произведение вектора цен p
на вектор объёма проданных товаров x . Скалярное произведение px в этом случае даёт суммарную стоимость проданных товаров x при ценах p .

Например, если объём всех товаров, проданных предприятием, выражается вектором x = (400; 750; 200; 300), элементы которого означают соответственно количество товаров различных групп, а цены в одних и тех же денежных единицах заданы в соответствующем порядке вектором p = (3; 2,1; 1,2; 0,5), то скалярное произведение

выражает суммарную стоимость всех товаров x.

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Векторы

с друзьями

Начало темы “Векторы”

Векторы: определения и действия над векторами Сложение векторов: длина суммы векторов и теорема косинусов

Продолжение темы “Векторы”

Линейная зависимость векторов Базис системы векторов. Аффинные координаты Векторное и смешанное произведение векторов

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.