Разница между позиционной и непозиционной системой счисления

Системы счисления

Разница между позиционной и непозиционной системой счисления
статьи

Системы счисления (нумерация) – совокупность способов обозначения натуральных чисел.

На ранних ступенях развития общества люди почти не умели считать. Они различали совокупности двух и трех предметов; всякая совокупность, содержавшая бóльшее число предметов, объединялась в понятии «много». Предметы при счете сопоставлялись обычно с пальцами рук и ног.

По мере развития цивилизации потребность человека в счете стала необходимой. Первоначально натуральные числа изображались с помощью некоторого количества черточек или палочек, затем для их изображения стали использовать буквы или специальные знаки.

В древнем Новгороде использовалась славянская система, где применялись буквы славянского алфавита; при изображении чисел над ними ставился знак ~ (титло).

Древние римляне пользовались нумерацией, сохраняющейся до настоящего времени под именем «римской нумерации», в которой числа изображаются буквами латинского алфавита. Сейчас ею пользуются для обозначения юбилейных дат, нумерации некоторых страниц книги (например, страниц предисловия), глав в книгах, строф в стихотворениях и т.д. В позднейшем своем виде римские цифры выглядят так:

I = 1; V = 5; X = 10; L = 50; С = 100; D = 500; M = 1000.

О происхождении римских цифр достоверных сведений нет. Цифра V могла первоначально служить изображением кисти руки, а цифра Х могла составиться из двух пятерок. В римской нумерации явственно сказываются следы пятеричной системы счисления. Все целые числа (до 5000) записываются с помощью повторения вышеприведенных цифр.

При этом, если бóльшая цифра стоит перед меньшей, то они складываются, если же меньшая стоит перед бóльшей (в этом случае она не может повторяться), то меньшая вычитается из бóльшей). Например, VI = 6, т.е. 5 + 1, IV = 4, т.е. 5 – 1, XL = 40, т е. 50 – 10, LX = 60, т.е. 50 + 10.

Подряд одна и та же цифра ставится не более трех раз: LXX = 70; LXXX = 80; число 90 записывается ХС (а не LXXXX).

Первые 12 чисел записываются в римских цифрах так:

I, II, III, IV, V, VI, VII, VIII. IX, X, XI, XII.

Другие же числа записываются, например, как:

XXVIII = 28; ХХХIХ = 39; CCCXCVII = 397; MDCCCXVIII = 1818.

Выполнение арифметических действий над многозначными числами в этой записи очень трудно. Тем не менее, римская нумерация преобладала в Италии до 13 в., а в других странах Западной Европы – до 16 в.

В славянской системе нумерации для записи чисел использовались все буквы алфавита, правда, с некоторым нарушением алфавитного порядка. Различные буквы означали различное количество единиц, десятков и сотен. Например, число 231 записывалось в виде ~ СЛА (C – 200, Л – 30, А – 1).

Этим системам свойственны два недостатка, которые привели к их вытеснению другими: необходимость большого числа различных знаков, особенно для изображения больших чисел, и, что еще важнее неудобство выполнения арифметических операций.

Более удобной и общепринятой и наиболее распространенной является десятичная система счисления, которая была изобретена в Индии, заимствована там арабами и затем через некоторое время пришла в Европу. В десятичной системе счисления основанием является число 10.

Существовали системы исчисления и с другими основаниями. В Древнем Вавилоне, например, применялась шестидесятеричная система счисления. Остатки ее мы находим в сохранившемся до сих пор делении часа или градуса на 60 минут, а минуты – на 60 секунд.

Широкое распространение имела в древности и двенадцатеричная система, происхождение которой, вероятно, связано, как и десятичной системы, со счетом на пальцах: за единицу счета принимались фаланги (отдельные суставы) четырех пальцев одной руки, которые при счете перебирались большим пальцем той же руки.

Остатки этой системы счисления сохранились и до наших дней и в устной речи, и в обычаях. Хорошо известно, например, название единицы второго разряда – числа 12 – «дюжина».

Сохранился обычай считать многие предметы не десятками, а дюжинами, например, столовые приборы в сервизе или стулья в мебельном гарнитуре. Название единицы третьего разряда в двенадцатеричной системе – гросс – встречается теперь редко, но в торговой практике начала столетия оно еще бытовало.

Например, в написанном в 1928 стихотворении Плюшкин В.В.Маяковский, высмеивая людей, скупающих все подряд, писал: «…укупил двенадцать гроссов дирижерских палочек». У ряда африканских племен и в Древнем Китае была употребительна пятеричная система счисления.

В Центральной Америке (у древних ацтеков и майя) и среди населявших Западную Европу древних кельтов была распространена двадцатеричная система. Все они также связаны со счетом на пальцах.

Самой молодой системой счисления по праву можно считать двоичную. Эта система обладает рядом качеств, делающей ее очень выгодной для использования в вычислительных машинах и в современных компьютерах.

Позиционные и непозиционные системы счисления

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами.

В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления.

Место каждой цифры в числе называется позицией. Первая известная нам система, основанная на позиционном принципе – шестидесятeричная вавилонская.

Цифры в ней были двух видов, одним из которых обозначались единицы, другим – десятки.

Однако наиболее употребительной оказалась индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной, так как в ней десять цифр.

Различие между позиционой и непозиционной систем счисления легче всего понять на примере сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях.

Бóльшая цифра соответствует бóльшему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI.

Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.

Позиционные системы счисления

Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 5557 – число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается.

Основание системы – это тоже число, и его мы будем указывать в обычной десятичной системе. Вообще, число x может быть представлено в системе с основанием p, как x = an·pn +an – 1·pn–1 + ap1 + ap0, где an

a0 – цифры в представлении данного числа. Так, например,

103510=1·103 + 0·102 + 3·101 + 5·100;

10102 = 1·23 + 0·22 + 1·21 + 0·20 = 10.

Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Вообще говоря, этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины, однако иногда в силу различных обстоятельств все-таки приходится обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32.

Чтобы оперировать с числами, записанными в таких нетрадиционных системах, нужно иметь в виду, что принципиально они ничем не отличаются от привычной десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.

Почему же не используются другие системы счисления? В основном, потому, что в повседневной жизни люди привыкли пользоваться десятичной системой счисления, и не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления, так как оперировать числами, записанными в двоичном виде, довольно просто.

Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе.

Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.

Перевод чисел из одной системы счисления в другую

Наиболее часто встречающиеся системы счисления – это двоичная, шестнадцатеричная и десятичная. Как же связаны между собой представления числа в различных системах счисления? Есть различные способы перевода чисел из одной системы счисления в другую на конкретных примерах.

Пусть нужно перевести число 567 из десятичной в двоичную систему. Сначала определяется максимальная степень двойки, такая, чтобы два в этой степени было меньше или равно исходному числу. В данном случае это 9, т.к. 29 =512, а 210 = 1024, что больше начального числа.

Таким образом получается число разрядов результата, оно равно 9 + 1 = 10, поэтому результат будет иметь вид 1ххххххххх, где вместо х могут стоять любые двоичные цифры. Вторая цифра результата находится так – двойка возводится в степень 9 и вычитается из исходного числа: 567 – 29 = 55. Остаток сравнивается с числом 28 = 256.

Так как 55 меньше 256, то девятый разряд – нуль, т.е. результат имеет вид 10хххххххх. Рассмотрим восьмой разряд. Так как 27 = 128 > 55, то и он будет нулевым.

Седьмой разряд также оказывается нулевым. Искомая двоичная запись числа принимает вид 1000хххххх. 25 = 32 < 55, поэтому шестой разряд равен 1 (результат 10001ххххх). Для остатка 55 – 32 = 23 справедливо неравенство 24 = 16 < 23, что означает равенство единице пятого разряда. Аналогично получается в результате число 1000110111. Это число разлагается по степеням двойки:

567 = 1·29 + 0·28 + 0·27 + 0·26 + 1·25 + 1·24 + 0·23 + 1·22 + 1·21 + 1·20

При другом способе перевода чисел используется операция деления в столбик. Если взять то же число 567 и разделить его на 2, получается частное 283 и остаток 1. Та же операция производится и с числом 283. Частное – 141, остаток – 1.

Опять полученное частное делится на 2 и так до тех пор, пока частное не станет меньше делителя. Теперь, чтобы получить число в двоичной системе счисления, достаточно записать последнее частное, т.е.

1, и приписать к нему в обратном порядке все полученные в процессе деления остатки.

Результат, естественно, не изменился: 567 в двоичной системе счисления записывается как 1 000 110 111.

Эти два способа применимы при переводе числа из десятичной системы в систему с любым основанием. Например, при переводе числа 567 в систему счисления с основанием 16 число сначала разлагается по степеням основания. Искомое число состоит из трех цифр, т.к. 162 = 256 

Позиционные и непозиционные системы счисления

Разница между позиционной и непозиционной системой счисления

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные системы счисления. Знаки, используемые при записи чисел, называются цифрами.

В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы: I V X L C D M

1 5 10 50 100 500 1000

В числе цифры записываются слева направо в порядке убывания. Величина числа определяется как сумма или разность цифр в числе. Если меньшая цифра стоит слева от большей цифры, то она вычитается, если справа — прибавляется. Например, VI = 5 + 1 = 6, а IX = 10 — 1 = 9, СССXXVII=100+100+100+10+10+5+1+1=327.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией. Система счисления Основание Алфавит

Десятичная 10 0123456789

Двоичная 2 01

Троичная 3 012

Восьмеричная 8 01234567

Шестнадцатеричная 16 0123456789ABCDEF

Первая известная нам система, основанная на позиционном принципе — шестидесятеричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим — десятки. Следы вавилонской системы сохранились до наших дней в способах измерения и записи величин углов и промежутков времени.

Однако наибольшую ценность для нас имеет индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной системы счисления, так как в ней десять цифр.

Для того чтобы лучше понять различие позиционной и непозиционной систем счисления, рассмотрим пример сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях.

Большая цифра соответствует большему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI.

Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.

Далее мы будем рассматривать только позиционные системы счисления.

Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 5557 — число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается.

Основание системы — это тоже число, и его мы будем указывать в обычной десятичной системе. Вообще, число x может быть представлено в системе с основанием p, как x=an*pn+an-1*pn-1+ a1*p1+a0*p0, где an…a0 — цифры в представлении данного числа.

Так, например, 103510=1*103+0*102+3*101+5*100;

10102 = 1*23+0*22+1*21+0*20 = 10.

Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Вообще говоря, этих систем счисления обычно хватает для полноценной работы, как человека, так и вычислительной машины. Однако иногда в силу различных обстоятельств приходится обращаться к другим системам счисления, например, к троичной, семеричной или системе счисления по основанию 32.

Для того чтобы нормально оперировать с числами, записанными в таких нетрадиционных системах, важно понимать, что принципиально они ничем не отличаются от привычной нам десятичной системы счисления. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.

Почему же мы не пользуемся другими системами счисления? В основном потому, что в повседневной жизни мы привыкли пользоваться десятичной системой счисления, и нам не требуется никакая другая система счисления. В вычислительных же машинах используется двоичная система счисления, так как оперировать над числами, записанными в двоичном виде, довольно просто.

Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе.

Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.

Методику представления информации в двоичной форме можно пояснить, проведя следующую игру. Нужно у собеседника получить интересующую нас информацию, задавая любые вопросы, но получая в ответ только одно из двух ДА либо НЕТ. Известным способом получения во время этого диалога двоичной формы информации является перечисление всех возможных событий.

Рассмотрим простейший случай получения информации. Вы задаете только один вопрос: Идет ли дождь?. При этом условимся, что с одинаковой вероятностью ожидаете ответ: ДА или НЕТ. Легко увидеть, что любой из этих ответов несет самую малую порцию информации. Эта порция определяет единицу измерения информации, называемую битом.

Благодаря введению понятия единицы информации появилась возможность определения размера любой информации числом битов. Образно говоря, если, например, объем грунта определяют в кубометрах, то объем информации — в битах. Условимся каждый положительный ответ представлять цифрой 1, а отрицательный — цифрой 0.

Тогда запись всех ответов образует многозначную последовательность цифр, состоящую из нулей и единиц, например 0100.

Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам. Но, не всегда и не везде люди пользовались десятичной системой счисления. В Китае, например, долгое время применялась пятеричная система счисления. В ЭВМ используют двоичную систему потому, что она имеет ряд преимуществ перед другими:

для ее реализации используются технические элементы с двумя возможными состояниями (есть ток — нет тока, намагничен — ненамагничен);

представление информации посредством только двух состояний надежно и помехоустойчиво;

возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;

двоичная арифметика проще десятичной (двоичные таблицы сложения и умножения предельно просты).

В двоичной системе счисления всего две цифры, называемые двоичными (binary digits). Сокращение этого наименования привело к появлению термина бит, ставшего названием разряда двоичного числа. Веса разрядов в двоичной системе изменяются по степеням двойки.

Поскольку вес каждого разряда умножается либо на 0, либо на 1, то в результате значение числа определяется как сумма соответствующих значений степеней двойки. Если какой-либо разряд двоичного числа равен 1, то он называется значащим разрядом.

Запись числа в двоичном виде намного длиннее записи в десятичной системе счисления.

Арифметические действия, выполняемые в двоичной системе, подчиняются тем же правилам, что и в десятичной системе. Только в двоичной системе счисления перенос единиц в старший разряд возникает чаще, чем в десятичной. Вот как выглядит таблица сложения в двоичной системе: 0 + 0 = 0 0 + 1 = 1

1 + 0 = 1 1 + 1 = 10 (перенос в старший разряд)

Таблица умножения для двоичных чисел еще проще: 0 * 0 = 0 1 * 0 = 0 0 * 1 = 0 1 * 1 = 1

Рассмотрим подробнее, как происходит процесс умножения двоичных чисел. Пусть надо умножить число 1101 на 101 (оба числа в двоичной системе счисления).

Машина делает это следующим образом: она берет число 1101 и, если первый элемент второго множителя равен 1, то она заносит его в сумму.

Затем сдвигает число 1101 влево на одну позицию, получая тем самым 11010, и если, второй элемент второго множителя равен единице, то тоже заносит его в сумму. Если элемент второго множителя равен нулю, то сумма не изменяется.

Двоичное деление основано на методе, знакомом вам по десятичному делению, т. е. сводится к выполнению операций умножения и вычитания. Выполнение основной процедуры — выбор числа, кратного делителю и предназначенного для уменьшения делимого, здесь проще, так как таким числом могут быть только либо 0, либо сам делитель.

Следует отметить, что большинство калькуляторов, реализованных на компьютере, позволяют осуществлять работу в системах счисления с основаниями 2, 8, 16 и, конечно, 10.

При наладке аппаратных средств компьютера или создании новой программы возникает необходимость заглянуть внутрь памяти машины, чтобы оценить ее текущее состояние. Но там все заполнено длинными последовательностями нулей и единиц двоичных чисел.

Эти последовательности очень неудобны для восприятия человеком, привыкшим к более короткой записи десятичных чисел.

Кроме того, естественные возможности человеческого мышления не позволяют оценить быстро и точно величину числа, представленного, например, комбинацией из 16 нулей и единиц.

Для облегчения восприятия двоичного числа решили разбивать его на группы разрядов, например, по три или четыре разряда. Эта идея оказалась очень удачной, так как последовательность из трех бит имеет 8 комбинаций, а последовательность из 4 бит — 16.

Числа 8 и 16 являются степенями двойки, поэтому легко находить соответствие с двоичными числами. Развивая эту идею, пришли к выводу, что группы разрядов можно закодировать, сократив при этом длину последовательности знаков.

Для кодировки трех битов требуется восемь цифр, поэтому взяли цифры от 0 до 7 десятичной системы. Для кодировки же четырех битов необходимо шестнадцать знаков; для этого взяли 10 цифр десятичной системы и 6 букв латинского алфавита: A, B, C, D, E, F.

Полученные системы, имеющие основания 8 и 16, назвали соответственно восьмеричной и шестнадцатеричной.

В восьмеричной (octal) системе счисления используются восемь различных цифр 0, 1, 2, 3, 4, 5, 6, 7. Основание системы — 8. При записи отрицательных чисел перед последовательностью цифр ставят знак минус.

Сложение, вычитание, умножение и деление чисел, представленных в восьмеричной системе, выполняются весьма просто подобно тому, как это делают в общеизвестной десятичной системе счисления.

В различных языках программирования запись восьмеричных чисел начинается с 0, например, запись 011 означает число 9.

В шестнадцатеричной (hexadecimal) системе счисления применяется десять различных цифр и шесть первых букв латинского алфавита. При записи отрицательных чисел слева от последовательности цифр ставят знак минус.

Для того чтобы при написании компьютерных программ отличить числа, записанные в шестнадцатеричной системе, от других, перед числом ставят 0x. То есть 0x11 и 11 — это разные числа.

В других случаях можно указать основание системы счисления нижним индексом.

Шестнадцатеричная система счисления широко используется при задании различных оттенков цвета при кодировании графической информации (модель RGB). Так, в редакторе гипертекста Netscape Composer можно задавать цвета для фона или текста как в десятичной, так и шестнадцатеричной системах счисления.

Системы счисления. Пример непозиционных систем счисления

Разница между позиционной и непозиционной системой счисления

Системы счисления – что это? Даже не зная ответа на этот вопрос, каждый из нас поневоле в своей жизни пользуется системами счисления и не подозревает об этом. Именно так, во множественном числе! То есть не одной, а несколькими. Прежде чем привести примеры непозиционных систем счисления, давайте разберемся в этом вопросе, поговорим и о позиционных системах тоже.

Потребность в счете

С древности люди имели потребность в счете, то есть интуитивно осознавали, что нужно каким-то образом выразить количественное видение вещей и событий. Мозг подсказывал, что необходимо использовать предметы для счета. Наиболее удобными всегда были пальцы на руках, и это понятно, ведь они всегда в наличии (за редкими исключениями).

Вот и приходилось древним представителям рода человеческого загибать пальцы в прямом смысле – обозначать количество убитых мамонтов, например. Названий у таких элементов счета еще не было, а лишь визуальная картинка, сопоставление.

Современные позиционные системы счисления

Система счисления – это метод (способ) преставления количественных значений и величин посредством определенных знаков (символов или букв).

Необходимо понимать, что такое позиционность и непозиционность в счете, прежде чем приводить примеры непозиционных систем счисления. Позиционных систем счисления множество.

Сейчас используют в различных областях знаний следующие: двоичную (включает только два значимых элемента: 0 и 1), шестеричную (количество знаков – 6), восьмеричную (знаков – 8), двенадцатеричную (двенадцать знаков), шестнадцатеричную (включает шестнадцать знаков).

Причем каждый ряд знаков в системах начинается с нуля. Современные компьютерные технологии основаны на использовании двоичных кодов – двоичной позиционной системы счисления.

Десятичная система счисления

Позиционностью считается наличие в различной степени значимых позиций, на которых располагаются знаки числа. Лучше всего это можно продемонстрировать на примере десятичной системы счисления. Ведь именно ею мы привыкли пользоваться с самого детства.

Знаков в этой системе десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Возьмем число 327. В нем имеются три знака: 3, 2, 7. Каждый из них расположен на своей позиции (месте). Семерка занимает позицию, отведенную под единичные значения (единицы), двойка – десятки, а тройка – сотни.

Так как число трехзначное, следовательно, позиций в нем всего три.

Исходя из вышесказанного, такое трехзначное десятичное число можно описать следующим образом: три сотни, два десятка и семь единиц. Причем значимость (важность) позиций отсчитывается слева направо, от слабой позиции (единицы) к более сильной (сотни).

Нам очень удобно себя чувствовать в десятичной позиционной системе счисления. У нас на руках десять пальцев, на ногах – также.

Пять плюс пять – так, благодаря пальцам, мы с детства легко представляем себе десяток. Вот почему бывает легко детям учить таблицу умножения на пять и на десять.

А еще так просто научиться считать денежные банкноты, которые чаще всего кратны (то есть делятся без остатка) на пять и на десять.

К удивлению многих, следует сказать, что не только в десятичной системе счета наш мозг привык делать некие расчеты. До сих пор человечество пользуется шестеричной и двенадцатеричной системами счисления.

То есть в такой системе существует только шесть знаков (в шестеричной): 0, 1, 2, 3, 4, 5.

В двенадцатеричной их двенадцать: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, где А – обозначает число 10, В – число 11 (так как знак должен быть один).

Посудите сами. Мы считаем время шестерками, не так ли? Один час – шестьдесят минут (шесть десятков), одни сутки – это двадцать четыре часа (два раза по двенадцать), год – двенадцать месяцев и так далее… Все временные интервалы легко укладываются в шести- и двенадцатеричные ряды. Но мы настолько к этому привыкли, что даже не задумываемся при отсчете времени.

Непозиционные системы счисления. Унарная

Необходимо определиться в том, что это такое – непозиционная система счисления. Это такая знаковая система, в которой нет позиций для знаков числа, или принцип “прочтения” числа от позиции не зависит. В ней также существуют свои правила записи или вычислений.

Приведем примеры непозиционных систем счисления. Вернемся к древности. Люди нуждались в счете и придумали наиболее простое изобретение – узелки. Непозиционной системой счисления является узелковая. Один предмет (мешок риса, бык, стог сена и пр.) отсчитывали, например, при покупке или продаже и завязывали узелок на веревочке.

В итоге на веревке получалось столько узелков, сколько мешков риса куплено (как пример). Но также это могли быть насечки на деревянной палочке, на каменной плите и т.д. Такая система счисления стала называться узелковой. У нее существует второе название – унарная, или единичная (“уно” на латыни означает “один”).

Становится очевидным, что данная система счисления – непозиционная. Ведь о каких позициях может идти речь, когда она (позиция) всего одна! Как ни странно, в некоторых уголках Земли до сих пор в ходу унарная непозиционная система счисления.

Также к непозиционным системам счисления относят:

  • римскую (для написания чисел используются буквы – латинские символы);
  • древнеегипетскую (похожа на римскую, также использовались символы);
  • алфавитную (использовались буквы алфавита);
  • вавилонскую (клинопись – использовали прямой и превернутый “клин”);
  • греческую (также относят к алфавитной).

Римская система счисления

Древняя римская империя, а также ее наука, была очень прогрессивной. Римляне дали миру множество полезных изобретений науки и искусства, в том числе свою систему счета. Две сотни лет назад римские числа использовали для обозначения сумм в деловых документах (таким образом избегали подделки).

Римская нумерация – пример непозиционной системы счисления, она известна нам сейчас. Также римская система активно используется, но не для математических расчетов, а для узко направленных действий.

Например, с помощью римских чисел принято обозначать исторические даты, века, номера томов, разделов и глав в книжных изданиях. Часто используют римские знаки для оформления циферблатов часов.

А также римская нумерация является примером непозиционной системы счисления.

Римляне обозначали цифры буквами латиницы. Причем числа они записывали по определенным правилам. Существует перечень ключевых символов в римской системе счисления, с помощью них записывались все числа без исключения.
Обозначения чисел римской системы счисления

Число (в десятичной системе счисления)

Римское число (буква латинского алфавита)

1I
5V
10X
50L
100C
500D
1000M

Правила составления чисел

Требуемое число получалось путем сложения знаков (букв латиницы) и вычисления их суммы. Рассмотрим, как символически записываются знаки в римской системе и как нужно их “считывать”. Перечислим основные законы формирования чисел в римской непозиционной системе счисления.

  1. Число четыре – IV, состоит из двух знаков (I, V – один и пять). Оно получается путем вычитания меньшего знака из большего, если он стоит левее. Когда меньший знак расположен справа, необходимо складывать, тогда получится число шесть – VI.
  2. Необходимо складывать два одинаковых знака, стоящих рядом. Например: СС – это 200 (С – 100), или ХХ – 20.
  3. Если первый знак числа меньше второго, то третьим в этом ряду может быть символ, значение которого еще меньше первого. Чтобы не запутаться, приведем пример: CDX – 410 (в десятичной).
  4. Некоторые крупные числа могут быть представлены разными способами, что является одним из минусов римской системы счета. Приведем примеры: MVM (римская система) = 1000 + (1000 – 5) = 1995 (десятичная система) или MDVD = 1000 + 500 + (500 – 5) = 1995. И это еще не все способы.

Непозиционная система счисления – это иногда сложный набор правил формирования чисел, их обработки (действий над ними). Арифметические операции в непозиционных системах счисления – дело непростое для современных людей. Не завидуем древнеримским математикам!

Пример сложения. Попробуем сложить два числа: XIX + XXVI = XXXV, это задание выполняется в два действия:

  1. Первое – берем и складываем меньшие доли чисел: IX + VI = XV (I после V и I перед X “уничтожают” друг друга).
  2. Второе – складываем большие доли двух чисел: X + XX = XXX.

Вычитание выполняется несколько сложнее. Уменьшаемое число требуется разбить на составные элементы, а после этого в уменьшаемом и вычитаемом сократить дублируемые символы. Из числа 500 вычтем 263:

D – CCLXIII = CCCCLXXXXVIIIII – CCLXIII = CCXXXVII.

Умножение римских чисел. Кстати, необходимо упомянуть, что у римлян не имелось знаков арифметичеких операций, они просто словами обозначали их.

Множимое число умножать нужно было на каждый отдельный символ множителя, получалось несколько произведений, которые необходимо было сложить. Таким способом производят умножение многочленов.

Что касается деления, то этот процесс в римской системе счисления был и остается наиболее сложным. Тут применялись древние римские счеты – абак. Чтобы работать с ним людей специально обучали (и не всякому человеку удавалось такую науку освоить).

О недостатках непозиционных систем

Как было сказано выше, в непозиционных системах счисления существуют свои недостатки, неудобства в использовании. Унарная достаточна проста для простого счета, но для арифметики и сложных вычислений она не годится вовсе.

В римской отсутствуют единые правила формирования больших чисел и возникает путаница, а также в ней очень сложно производить вычисления. Кроме того, самым большим числом, которое могли записать древние римляне с помощью своего метода, было 100000.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.