Разница между классической и современной формулировкой периодического закона Менделеева

Периодический закон Менделеева, суть и история открытия

Разница между классической и современной формулировкой периодического закона Менделеева

Периодический закон Дмитрия Ивановича Менделеева — один из фундаментальных законов природы, который увязывает зависимость свойств химических элементов и простых веществ с их атомными массами. В настоящее время закон уточнен, и зависимость свойств объясняется зарядом ядра атома.

Закон был открыт русским ученым в 1869-м году. Менделеев представил его научному сообществу в докладе съезду Русского химического общества (доклад был сделан другим ученым, так как Менделеев был вынужден срочно выехать по заданию Вольного экономического общества Петербурга). В этом же году вышел учебник «Основы химии», написанный Дмитрием Ивановичем для студентов.

В нем ученый описал свойства популярных соединений, а также постарался дать логическую систематизацию химических элементов. Также в нем впервые была представлена таблица с периодически расположенными элементами, как графическая интерпретация периодического закона.

Всее последующие годы Менделеев совершенствовал свою таблицу, например, добавил столбец инертных газов, которые были открыты спустя 25 лет.

Алюминий гранулированныйЙод кристаллическийСера молотая

Научное сообщество далеко не сразу приняло идеи великого русского химика, даже в России. Но после того, как были открыты три новых элемента (галлий в 1875-м, скандий в 1879-м и германий в 1886-м годах), предсказанные и описанные Менделеевым в своем знаменитом докладе, периодический закон был признан.

Периодический закон Менделеева:

  • Является всеобщим законом природы.
  • В таблицу, графически представляющую закон, включаются не только все известные элементы, но и те, которые открывают до сих пор.
  • Все новые открытия не повлияли на актуальность закона и таблицы. Таблица совершенствуется и изменяется, но ее суть осталась неизменной.
  • Позволил уточнить атомные веса и другие характеристики некоторых элементов, предсказать существование новых элементов.
  • Химики получили надежную подсказку, как и где искать новые элементы. Кроме этого, закон позволяет с высокой долей вероятности заранее определять свойства еще неоткрытых элементов.
  • Сыграл огромную роль в развитии неорганической химии в 19-м веке.

История открытия

Есть красивая легенда о том, что свою таблицу Менделеев увидел во сне, а утром проснулся и записал ее. На самом деле, это просто миф. Сам ученый много раз говорил, что созданию и совершенствованию периодической таблицы элементов он посвятил 20 лет своей жизни.

Все началось с того, что Дмитрий Иванович решил написать для студентов учебник по неорганической химии, в котором собирался систематизировать все известные на этот момент знания. И естественно, он опирался на достижения и открытия своих предшественников.

Впервые внимание на взаимосвязь атомных весов и свойств элементов обратил немецкий химик Дёберейнер, который попытался разбить известные ему элементы на триады с похожими свойствами и весами, подчиняющимися определенному правилу. В каждой тройке средний элемент имел вес, близкий к среднему арифметическому двух крайних элементов.

Ученый смог таким образом образовать пять групп, например, Li–Na–K; Cl–Br–I. Но это были далеко не все известные элементы. К тому же, тройка элементов явно не исчерпывала список элементов с похожими свойствами. Попытки найти общую закономерность позже предпринимали немцы Гмелин и фон Петтенкофер, французы Ж. Дюма и де Шанкуртуа, англичане Ньюлендс и Одлинг.

Дальше всех продвинулся немецкий ученый Мейер, который в 1864-м году составил таблицу, очень похожую на таблицу Менделеева, но она содержала лишь 28 элементов, в то время как было известно уже 63.

В отличие от своих предшественников Менделееву удалось составить таблицу, в которую вошли все известные элементы, расположенные по определенной системе. При этом, некоторые клетки он оставил незаполненными, примерно вычислив атомные веса некоторых элементов и описав их свойства.

Кроме этого, русскому ученому хватило смелости и дальновидности заявить, что открытый им закон является всеобщим законом природы и назвал его «периодическим законом». Сказав «а», он пошел дальше и исправил атомные веса элементов, которые не вписывались в таблицу.

При более тщательной проверке, оказалось, что его исправления верны, а открытие описанных им гипотетических элементов стало окончательным подтверждением истинности нового закона: практика доказала справедливость теории.

Тип урока: урок изучения нового материала.

Цель: раскрыть сущность периодического закона и строение периодической таблицы химических элементов Д.И. Менделеева.

Задачи:

  • Образовательные: познакомить с историей открытия периодического закона Д.И. Менделеева; закрепить знания о взаимосвязи между положением элемента в периодической системе и строением атома; дать понятие периодичности; раскрыть сущность, структуру, значение периодического закона и периодической таблицы химических элементов.
  • Развивающие :стимулировать познавательную активность учащихся; способствовать формированию научного мировоззрения; развивать логическое мышление, умение выделить главное, сравнивать, обобщать.
  • Воспитательные: интерес к предмету, к истории развития науки, патриотизм, умение работать в группе, чувство сопричастности к общему делу.

Методы: словесный; словесно-наглядный; поисково-исследовательский; метод проектов.

Форма организации познавательной деятельности: групповая.

Оборудование: периодическая система химических элементов Д.И. Менделеева; творческие проекты учеников; проектор, магнитофон.

Подготовка урока: За 2 недели до урока формируются группы, в которую входят 5-6 учеников. Каждый группе сообщаются темы, по которым должны подготовить презентации. Необходимо не позже за два дня до проведения урока проверить презентации, чтобы материал не выходил за рамки программы и был сформулирован корректно.

Эпиграф: «Периодическому закону будущее не грозит разрушением, а лишь надстройки и развитие обещает».

Ход урока

Учитель: Хочу раскрыть вам один секрет: экзамен по химии очень сложный, но его сдать легко и просто, так как учитель сам раздает шпаргалки…периодическую таблицу химических элементов Д.И. Менделеева.

Ведь из периодической таблицы мы можем почерпнуть всю интересующую нас информацию.

А для этого нам необходимо изучить и раскрыть сущность периодического закона и периодической таблицы химических элементов Менделеева.

Начать нашу работу я бы хотела с музыки. Послушайте….

Д.И. Менделеев очень любил музыку, особенно произведения композитора Л. Бетховена…

Нам с вами предстоит пройти тернистый путь исследований, чтобы доказать правоту нашего великого соотечественника. Надеюсь эта музыка вдохновит и вас на плодотворную работу.

«Другого ничего в природе нет, Ни здесь, ни там, в космических глубинах: Все – от песчанок малых до планет – Из элементов состоит единых…»

Степан Щипачев

Еще алхимики пытались найти закон природы, на основе которого можно было бы систематизировать химические элементы. Но им недоставало надежных и подробных сведений об элементах. К середине 19 века знаний о химических элементах стало достаточно, а число элементов возросло настолько, что в науке возникла естественная потребность в их классификации.

Презентация 1. Первые попытки классификации химических элементов.

(выступление группы 1, см. Приложение 1)

Вопросы к классу:

  • сколько химических элементов было известно к моменту открытия периодического закона?
  • почему другие учёные (Ньюлендс, Мейер) много сделали для подготовки открытия периодического закона, но не могли постичь истину?

Учитель: Работая в Петербургском университете Д.И. Менделеев не нашел ничего, что можно было бы рекомендовать студентам в качестве учебного пособия. И решил написать новую книгу «Основы химии». Работа над учебником привело к открытию периодического закона.

Мир сложен. Он полон событий, сомнений, И тайн бесконечных, и смелых догадок. Как чудо природы Является гений, И в хаосе этом Находит порядок… Весь мир большой: Жара и стужа, Планет круженье, свет зари – Все то, что видим мы снаружи, Законом связано внутри. Найдется ль правило простое, Что целый мир объединит? Таблицу Менделеев строит,

Природы ищет алфавит.

Презентация 2. Сущность открытия периодического закона.

(выступление группы 2, см. Приложение 2)

Вопросы к классу:

  • На что обратил внимание Д.И. Менделеев при расположении элементов в таблице?
  • Что такое периодичность?

Учитель: К сожалению, сторонников периодического закона сначала было очень мало, даже среди русских ученых. Противников – иного, особенно в Германии и Англии. Возникало много вопросов. О решении вопросов следующая презентация.

Презентация 3. Современная формулировка периодического закона.

(выступление группы 3)

Вопросы к классу:

  • В чем различия современной формулировки периодического закона от формулировки данной Д.И. Менделеевым?
  • От чего зависит свойства элементов?

Учитель: Графическим изображением периодического закона является периодическая таблица химических элементов.

Презентация 4. Структура периодической системы химических элементов Д.И. Менделеева.

(выступление группы 4, см. Приложение 3)

Вопросы к классу:

  • Какую информацию в себе несет порядковый номер элемента?
  • Какую информацию в себе несет порядковый номер группы?
  • Какую информацию в себе несет порядковый номер периоды ?
  • Какие именно электроны отвечают за свойства атомов?
  • Почему свойства элементов периодически повторяются?
  • В чем же физический смысл периодического закона?

Презентация 5. Значение периодического закона.

(выступление группы 5)

Учитель: Закон, открытый Д.И. Менделеевым объективно и верно отражает явления и процессы, протекающие в природе, а графическое изображение таблицы помогает решать самые разные технические задачи, связанные с выбором наилучших материалов и правильным их использованием. Она определяет основные направления научно-технического прогресса.

Д.И.Менделеев работал над созданием таблицы 15 лет. Он был великим ученным.

Презентация 6. Д.И. Менделеев. Жизнь и деятельность.

(выступление группы 6, см. Приложение 4)

Итак, мы познакомились с историей открытия периодического закона и еще раз убедились, что по периодической системе можно очень много узнать о каждом химическом элементе, что, бесспорно, доказывает гениальность этого открытия.

В 1905 году Менделеев писал: « По видимой, периодическому закону будущие не грозит разрушением, а только надстройки и развития обещает».

И это будущее наступило.

Тесты

  1. Ко времени открытия периодического закона было известно: а) 27 химических элементов; б) 63 химических элемента; в) 52 химических элемента;

    г) 109 химических элементов.

  2. Д.И. Менделеев в своём открытии опирался на: а) количество молекул; б) названия элементов; в) атомную массу;

    г) спираль Шанкуртуа.

  3. Свойства элементов в группах и периодах повторяются: а) периодически; б) линейно; в) волнообразно;

    г) прерывисто.

  4. Периодическая система одержала триумф после открытия: а) галлия; б) скандия; в) таллия;

    г) германия.

  5. В периодической системе: а) пять периодов; б) семь периодов; в) десять периодов;

    г) восемь периодов.

  6. Номер группы соответствует: а)высшей валентности; б) низшей валентности; в) числу электронов;

    г) числу протонов.

Спасибо всем, кто принял активное участие в подготовке и проведении этого урока.

9.08.2009

Периодический закон и Периодическая система химических элементов Д.И. Менделеева – HIMI4KA

Разница между классической и современной формулировкой периодического закона Менделеева
ОГЭ 2018 по химии › Подготовка к ОГЭ 2018

Существуют две формулировки периодического закона химических элементов: классическая и современная.

Классическая, в изложении его первооткрывателя Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.

Современная: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).

Графическим изображением периодического закона является периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространёнными изображениями периодической системы элементов Д.И. Менделеева являются короткая и длинная формы.

Группы и периоды Периодической системы. Физический смысл порядкового номера химического элемента

Группами называют вертикальные ряды в периодической системе. В группах элементы объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгрупп.

Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов.

Химические свойства элементов главных и побочных подгрупп значительно различаются.

Периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.

В периодической системе имеются семь периодов: первый, второй и третий периоды называют малыми, в них содержится соответственно 2, 8 и 8 элементов; остальные периоды называют большими: в четвёртом и пятом периодах расположены по 18 элементов, в шестом — 32, а в седьмом (пока незавершенном) — 31 элемент. Каждый период, кроме первого, начинается щелочным металлом, а заканчивается благородным газом.

Физический смысл порядкового номера химического элемента: число протонов в атомном ядре и число электронов, вращающихся вокруг атомного ядра, равны порядковому номеру элемента.

Закономерности изменения свойств элементов и их соединений в связи с положением в Периодической системе химических элементов Д.И. Менделеева

Напомним, что группами называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.

Свойства элементов в подгруппах закономерно изменяются сверху вниз:

  • усиливаются металлические свойства и ослабевают неметаллические;
  • возрастает атомный радиус;
  • возрастает сила образованных элементом оснований и бескислородных кислот;
  • электроотрицательность падает.

Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений.

В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы.

Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).

Оксиды состава R2O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства.

Оксиды состава RO2, R2O5, RO3, R2O7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.

Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH4, RH3, RH2, RH.

Соединения RH4 имеют нейтральный характер; RH3 — слабоосновный; RH2 — слабокислый; RH — сильнокислый характер.

Напомним, что периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.

В пределах периода с увеличением порядкового номера элемента:

  • электроотрицательность возрастает;
  • металлические свойства убывают, неметаллические возрастают;
  • атомный радиус падает.

Тренировочные задания

1. Среди перечисленных химический элемент с максимальным радиусом атома — это

1) неон 2) алюминий 3) калий

4) кальций

2. Среди перечисленных химический элемент с минимальным радиусом атома — это

1) алюминий 2) бор 3) калий

4) неон

3. Наиболее ярко металлические свойства выражены у элемента

1) Rb 2) Li 3) Mg

4) Ca

4. Наиболее ярко неметаллические свойства выражены у элемента

1) F 2) S 3) O

4) N

5. Наибольшее число валентных электронов у элемента

1) фтор 2) водород 3) натрий

4) сера

6. Наименьшее число валентных электронов у элемента

1) кислород 2) кремний 3) водород

4) кальций

7. Металлические свойства элементов возрастают в ряду

1) Ba, Li, Cs, Mg 2) Al, Mg, Ca, K 3) Li, Cs, Mg, Ba

4) Na, Mg, Li, Al

8. Неметаллические свойства элементов ослабевают в ряду:

1) N, S, Br, Cl 2) O, S, Se, Te 3) Se, I, S, O

4) N, P, O, F

9. Химические элементы перечислены в порядке возрастания атомного радиуса в ряду

1) углерод, бериллий, магний 2) калий, магний, алюминий 3) хлор, натрий, фтор

4) азот, фосфор, фтор

10. Химические элементы перечислены в порядке убывания атомного радиуса в ряду

1) водород, бор, алюминий 2) углерод, кремний, калий 3) натрий, хлор, фтор

4) сера, кремний, магний

11. Кислотные свойства водородных соединений усиливаются в ряду

1) HI – PH3 – HCl – H2S
2) PH3 – H2S – HBr – HI
3) H2S – PH3 – HCl – SiH4
4) HI – HCl – H2S – PH3

12. Кислотные свойства водородных соединений ослабевают в ряду

1) HI – PH3 – HCl – H2S
2) PH3 – H2S – HBr – HI
3) H2S – PH3 – HCl – SiH4
4) HI – HBr – HCl – HF

13. Основные свойства соединений усиливаются в ряду

1) LiOH – KOH – RbOH
2) LiOH – KOH – Ca(OH)2
3) Ca(OH)2 – KOH – Mg(OH)2
4) LiOH – Ca(OH)2 – KOH

14. Основные свойства соединений ослабевают в ряду

1) LiOH – Ba(OH)2 – RbOH
2) LiOH – Ba(OH)2 – Ca(OH)2
3) Ca(OH)2 – KOH – Mg(OH)2
4) LiOH – Ca(OH)2 – KOH

15. Во втором периоде Периодической системы элементов Д.И. Менделеева с увеличением заряда ядра у химических элементов:

1) возрастает электроотрицательность 2) уменьшается заряд ядра 3) возрастает атомный радиус

4) возрастает степень окисления

16. Наиболее сильной кислотой, образованной элементом второго периода, является

1) угольная 2) азотная 3) фтороводородная

4) азотистая

17. Наиболее сильное основание образует химический элемент

1) магний 2) литий 3) алюминий

4) калий

18. Наиболее сильная бескислородная кислота соответствует элементу

1) селен 2) фтор 3) йод

4) сера

19. В ряду элементов Li → B → N → F

1) убывает атомный радиус 2) возрастают металлические свойства 3) уменьшается число протонов в атомном ядре

4) увеличивается число электронных слоёв

20. В ряду элементов Li → Na → K → Rb

1) убывает атомный радиус 2) ослабевают металлические свойства 3) уменьшается число протонов в атомном ядре

4) увеличивается число электронных слоёв

Чем отличается классическая формулировка периодического закона менделеева от современной

Разница между классической и современной формулировкой периодического закона Менделеева

Cтраница 1

Современная формулировка периодического закона следующая: свойства элементов, а также свойства и формы их соединений находятся в периодической зависимости от зарядов ядер атомов элементов. [1]

Современная формулировка периодического закона Д. И. Менделеева такова: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда атомных ядер. Она только базируется на новых данных, которые придают закону и системе научную обоснованность и подтверждают их правильность. [2]

Современная формулировка периодического закона: свойства простых веществ и свойства соединений элементов находятся в периодической зависимости от заряда ядра ( атома) элемента. [3]

Современная формулировка периодического закона Д. И. Менделеева такова: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда атомных ядер. Она только базируется на новых данных, которые придают закону и системе научную обоснованность и подтверждают их правильность. [4]

Современная формулировка периодического закона Д. И. Менделеева такова: свойства элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов. [5]

Современная формулировка периодического закона Д. И. Менделеева такова: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда атомных, ядер. Она только базируется на новых данных, которые придают закону и системе научную обоснованность и подтверждают их правильность. [6]

Чемсовременная формулировка периодического закона отличается от прежней и почему она является более точной. [7]

Входит всовременную формулировку Периодического закона Д. И. Менделеева: свойства элементов находятся в периодической зависимости от порядкового номера. [8]

Почему формулировка Д. И. Менделеева исовременная формулировка периодического закона не противоречат друг другу. [9]

График закона Мозли. [10]

На основании закона Мозли и открытий Резерфорда и Чэдвика можно датьсовременную формулировку периодического закона Д. И. Менделе-ева: свойства химических элементов и их соединений находятся в периодической зависимости от величины положительных зарядов ядер их атомов. [11]

Представление о величине заряда ядра как об определяющем свойстве атома легло в основусовременной формулировки периодического закона Д. И. Менделеева: свойства химических элементов, а также формы и свойства соединений этих элементов находятся в периодической зависимости от величины заряда ядер их атомов. [12]

Мы видим, что атомы одного и того же элемента различаются по величине атомных весов, и следовательно, химические свойства элементов определяются не их атомным весом, а зарядом ядра атома. Поэтомусовременная формулировка периодического закона гласит: свойства элементов находятся в периодической зависимости от их порядковых номеров. [13] Исследования строения атомов показали, что важнейшей и наиболее устойчивой характеристикой атома является положительный заряд ядра. Поэтомусовременная формулировка периодического закона Д. И. Менделеева такова: свойства химических элементов и их соединений находятся в периодической зависимости от зарядов ядер атомов элементов. [14]

Некоторые константы обыкновенной и тяжелой воды. [15]

Страницы: 1 2

Источник:

Периодический закон Менделеева

В 1871 году был сформулирован периодический закон Менделеева. К этому времени науке было известно 63 элемента, и Дмитрий Иванович Менделеев упорядочил их на основе относительной атомной массы. Современная периодическая таблица значительно расширилась.

В 1869 году, работая над учебником химии, Дмитрий Менделеев столкнулся с проблемой систематизации материала, накопленного за много лет разными учёными — его предшественниками и современниками.

Ещё до работы Менделеева предпринимались попытки систематизировать элементы, что послужило предпосылками разработки периодической системы.

Рис. 1. Менделеев Д. И..

Поиски классификации элементов кратко описаны в таблице.

ГодУчёныйЧто сделано
1829Иоганн ДёберейнерОбъединил элементы со схожими химическими свойствами в триады. Например, одну триаду составили Li, Na, K. Таблица включала пять триад
1862Александр ШанкуртуаСоздал «земную спираль», расположив 50 элементов по спирали
1864Джон НьюлендсРасположил элементы в порядке возрастания атомных масс и выявил сходство между каждым восьмым элементом. Закономерность была названа законом октав
1864Лотар МейерРаспределил 28 элементов по шести столбцам в соответствии с их валентностью

Менделеев упорядочил элементы по относительной атомной массе, расположив их в порядке возрастания. Всего получилось девятнадцать горизонтальных и шесть вертикальных рядов. Это была первая редакция периодической таблицы элементов. С этого начинается история открытия периодического закона.

Учёному понадобилось почти три года, чтобы создать новую, более совершенную таблицу. Шесть столбцов элементов превратились в горизонтальные периоды, каждый из которых начинался щелочным металлом, а заканчивался неметаллом (инертные газы ещё не были известны). Горизонтальные ряды образовали восемь вертикальных групп.

В отличие от своих коллег Менделеев использовал два критерия распределения элементов:

  • атомную массу;
  • химические свойства.

Оказалось, что между двумя этими критериями прослеживается закономерность. После определённого количества элементов с возрастающей атомной массой, свойства начинают повторяться.

Рис. 2. Таблица, составленная Менделеевым.

Изначально теория не выражалась математически и не могла полностью подтвердиться экспериментально. Физический смысл закона стал понятен только после создания модели атома. Смысл заключается в повторении структуры электронных оболочек при последовательном увеличении зарядов ядер, что отражается на химических и физических свойствах элементов.

Установив периодичность изменений свойств с увеличением атомной массы, Менделеев в 1871 году сформулировал периодический закон, ставший основополагающим в химической науке.

Дмитрий Иванович определил, что свойства простых веществ находятся в периодической зависимости от относительных атомных масс.

Наука XIX века не обладала современными знаниями об элементах, поэтому современная формулировка закона несколько отличается от менделеевской. Однако суть остаётся прежней.

С дальнейшим развитием науки было изучено строение атома, что повлияло на формулировку периодического закона. Согласно современному периодическому закону свойства химических элементов зависят от зарядов атомных ядер.

Со времён Менделеева созданная им таблица значительно преобразилась и стала отражать практически все функции и характеристики элементов. Умение пользоваться таблицей необходимо для дальнейшего изучения химии. Современная таблица представлена в трёх формах:

  • короткая – периоды занимают по две строчки, а водород часто относят к 7 группе;
  • длинная – изотопы и радиоактивные элементы вынесены за пределы таблицы;
  • сверхдлинная – каждый период занимает отдельную строку.

Рис. 3. Длинная современная таблица.

Короткая таблица — наиболее устаревший вариант, который был отменён в 1989 году, но по-прежнему используется во многих учебниках. Длинная и сверхдлинная формы признаны международным сообществом и используются по всему миру. Несмотря на установленные формы, учёные продолжают совершенствовать периодическую систему, предлагая новейшие варианты.

Периодический закон и периодическая система Менделеева были сформулированы в 1871 года. Менделеев выявил закономерности свойств элементов и упорядочил их на основе относительной атомной массы. С возрастанием массы менялись, а затем повторялись свойства элементов. Впоследствии таблица была дополнена, а закон скорректирован в соответствии с современными знаниями.

Источник:

Периодический закон — HIMI4KA

ЕГЭ 2018 по химии › Подготовка к ЕГЭ 2018

Существуют две формулировки Периодического закона химических элементов: классическая и современная.

Классическая формулировка (в изложении его первооткрывателя Д.И. Менделеева): свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.

Современная формулировка: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).

Графическим изображением Периодического закона является Периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространенными изображениями Периодической системы элементов Д. И. Менделеева являются короткая и длинная формы.

Группами называют вертикальные ряды в периодической системе. В группах элементы объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгруппы.

Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов.

Химические свойства элементов главных и побочных подгрупп значительно различаются.

Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений.

В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы.

Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).

Оксиды состава R2O проявляют сильные оснОвные свойства, причем их основность возрастает с увеличением порядкового номера. Оксиды состава RO (за исключением BeO) проявляют основные свойства.

Разница между классической и современной формулировкой периодического закона Менделеева

Разница между классической и современной формулировкой периодического закона Менделеева

Знаменитый русский ученый Дмитрий Иванович Менделеев еще в 19 веке сформулировал периодический закон, оказавший исключительно большое влияние на развитие физики, химии и науки в целом. Но с тех пор соответствующая концепция претерпела ряд изменений. В чем они заключаются?

статьи

В 1871 году Д. И. Менделеев предложил научному сообществу фундаментальную формулировку, по которой свойства простых тел, соединений элементов (равно как и их формы), как результат — и свойства тел, образуемых ими (простых и сложных), следует рассматривать как находящиеся в периодической зависимости от показателей их атомного веса.

Данная формулировка была опубликована в авторской статье Д. И. Менделеева «Периодическая законность химических элементов». Соответствующей публикации предшествовала большая работа ученого в области исследования физических и химических процессов.

В 1869 году в российском научном сообществе появилась новость об открытии Д. И. Менделеевым Периодического закона химических элементов. Вскоре был издан учебник, в котором была обнародована одна из первых версий знаменитой Таблицы Менделеева.

С термином «периодический закон» Д. И. Менделеев первые ознакомил широкую публику в 1870 году, в одной из своих научных статей. В данном материале ученый указал на тот факт, что существуют еще не открытые химические элементы.

Менделеев обосновывал это тем, что свойства каждого отдельного химического элемента промежуточны между характеристиками тех, что соседствуют с ним по периодической таблице. Причем как в группе, так и в периоде.

То есть свойства элемента промежуточны между характеристиками элементов, располагающихся выше и ниже по таблице относительно него, а также находящихся правее и левее.

Таблица Менделеева стала уникальным результатом научных трудов. Кроме того, принципиальная новизна концепции Менделеева заключалась в том, что он, во-первых, разъяснил закономерности в соотношениях величин атомных масс химических элементов, а во-вторых, предложил сообществу исследователей рассматривать данные закономерности в качестве закона природы.

В течение нескольких лет после обнародования периодического закона Менделеева химические элементы, не известные на момент публикации соответствующей концепции, но предсказанные ученым, были открыты. В 1875 году был открыт галлий. В 1879-м — скандий, в 1886-м — германий. Периодический закон Менделеева стал неоспоримой теоретической основой химии.

Современная формулировка периодического закона

По мере развития химии и физики концепция Д. И. Менделеева развивалась. Так, в конце 19 — начале 20 века ученые смогли объяснить физический смысл того или иного атомного номера химического элемента. Позже исследователи разработали модель изменений электронной структуры атомов в корреляции с ростом зарядов ядер соответствующих атомов.

Сейчас формулировка периодического закона — с учетом вышеобозначенных и других открытий ученых — несколько отличается от предложенной Д. И. Менделеевым. В соответствии с ней свойства элементов, а также образуемых ими веществ (равно как и их формы) характеризуются периодической зависимостью от зарядов ядер атомов соответствующих элементов.

Сравнение

Главное отличие классической формулировки периодического закона Менделеева от современной заключается в том, что первоначальная трактовка соответствующего научного закона предполагает зависимость свойств элементов и образуемых ими соединений от показателей их атомного веса. Современная трактовка также предполагает наличие подобной зависимости — но предопределяемой зарядом ядер атомов химических элементов. Так или иначе, ко второй формулировке ученые пришли, в течение долгого времени развивая первую путем кропотливого труда.

Определив, в чем разница между классической и современной формулировкой периодического закона Менделеева, отразим выводы в таблице.

Таблица

Формулировка периодического закона МенделееваСовременная формулировка периодического закона
Что общего между ними?
Обе концепции предполагают периодическую зависимость свойств элементов и образуемых ими соединений от неких факторов
В чем разница между ними?
Д. И. Менделеев предложил формулировку, по которой свойства элементов имеют периодическую зависимость от показателей их атомного весаСовременные ученые применяют формулировку, по которой свойства элементов имеют периодическую зависимость от заряда ядер их атомов

Периодический закон Д. И. Менделеева и периодическая система химических элементов

Разница между классической и современной формулировкой периодического закона Менделеева

Периодический закон Д.И. Менделеева и периодическая система химических элементов имеет большое значение в развитии химии. Окунемся в 1871 год, когда профессор химии Д.И.

Менделеев,  методом многочисленных проб и ошибок, пришел  к выводу, что «… свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

Периодичность изменения свойств элементов возникает вследствие периодического повторения электронной конфигурации внешнего электронного слоя  с увеличением заряда ядра.

Современная формулировка периодического закона такова:

«свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов».

Преподавая химию, Менделеев понимал, что запоминание индивидуальных свойств каждого элемента, вызывает у студентов трудности. Он стал искать пути создания системного метода, чтобы облегчить запоминание свойств элементов. В результате появилась естественная таблица, позже она стала называться периодической.

Наша современная таблица очень похожа на менделеевскую. Рассмотрим ее подробнее.

Таблица Менделеева

Периодическая таблица Менделеева состоит из 8 групп и 7 периодов.

Вертикальные столбцы таблицы называют группами. Элементы, внутри каждой группы, обладают сходными химическими и физическими свойствами. Это объясняется тем, что элементы одной группы имеют сходные электронные конфигурации внешнего слоя, число электронов на котором равно номеру группы. При этом группа разделяется на главные и побочные подгруппы.

В Главные подгруппы входят элементы, у которых валентные электроны располагаются на внешних ns- и np- подуровнях. В Побочные подгруппы входят элементы, у которых  валентные электроны располагаются на внешнем ns- подуровне и внутреннем (n — 1) d- подуровне (или (n — 2) f- подуровне).

Все элементы в периодической таблице, в зависимости от того, на каком подуровне (s-, p-, d- или f-) находятся валентные электроны классифицируются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III — VII групп), d- элементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды).

Высшая валентность элемента (за исключением O, F, элементов подгруппы меди и восьмой группы) равна номеру группы, в которой он находится.

Для элементов главных и побочных подгрупп одинаковыми являются формулы высших оксидов (и их гидратов). В главных подгруппах состав водородных соединений являются одинаковыми, для элементов, находящихся в этой группе.

Твердые гидриды образуют элементы главных подгрупп I — III групп, а IV — VII групп образуют а газообразные водородные соединения. Водородные соединения типа ЭН4 – нейтральнее соединения, ЭН3 – основания, Н2Э и НЭ — кислоты.

Горизонтальные ряды таблицы называют периодами. Элементы в периодах отличаются между собой, но общее у них то, что последние электроны находятся на одном энергетическом уровне (главное квантовое число n — одинаково).

Первый период отличается от других тем, что там находятся всего 2 элемента: водород H и гелий He.

Во втором периоде находятся 8 элементов (Li — Ne). Литий Li – щелочной металл начинает период, а замыкает его благородный газ неон Ne.

В третьем периоде, также как и во втором находятся 8 элементов (Na — Ar). Начинает период щелочной металл натрий Na, а замыкает его благородный газ аргон Ar.

В четвёртом периоде находятся 18 элементов (K — Kr) – Менделеев его обозначил как  первый большой период. Начинается он также с щелочного металла Калий, а заканчивается инертным газом криптон Kr. В состав больших периодов входят переходные элементы (Sc — Zn) — d-элементы.

В пятом  периоде, аналогично четвертому находятся 18 элементов (Rb — Xe) и структура его сходна с четвёртым. Начинается он также с щелочного металла рубидий Rb, а заканчивается инертным газом ксенон Xe. В состав больших периодов входят переходные элементы (Y — Cd) — d-элементы.

Шестой период состоит из 32 элементов (Cs — Rn). Кроме 10 d-элементов (La, Hf — Hg) в нем находится ряд из 14 f-элементов(лантаноиды)- Ce — Lu

Седьмой период не закончен. Он начинается с Франций Fr, можно предположить, что он будет содержать, также как и шестой период, 32 элемента, которые уже найдены (до элемента с Z = 118).

Интерактивная таблица Менделеева

Если посмотреть на периодическую таблицу Менделеева и провести воображаемую черту, начинающуюся у бора и заканчивающуюся между полонием и астатом, то все металлы будут находиться слева от черты, а неметаллы – справа. Элементы, непосредственно прилегающие к этой линии будут обладать свойствами как металлов, так и неметаллов. Их называют металлоидами или полуметаллами. Это бор, кремний, германий, мышьяк, сурьма, теллур и полоний.

Периодический закон

Менделеев дал следующую формулировку Периодического закона: «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».
Существует четыре основных периодических закономерности:

Правило октета утверждает, что все элементы стремятся приобрести или потерять электрон, чтобы иметь восьмиэлектронную конфигурацию ближайшего благородного газа. Т.к. внешние s- и p-орбитали благородных газов полностью заполнены, то они являются самыми стабильными элементами.

Энергия ионизации – это количество энергии, необходимое для отрыва электрона от атома. Согласно правилу октета, при движении по периодической таблице слева направо для отрыва электрона требуется больше энергии. Поэтому элементы с левой стороны таблицы стремятся потерять электрон, а с правой стороны – его приобрести.

Самая высокая энергия ионизации у инертных газов. Энергия ионизации уменьшается при движении вниз по группе, т.к. у электронов низких энергетических уровней есть способность отталкивать электроны с более высоких энергетических уровней. Это явление названо эффектом экранирования. Благодаря этому эффекту внешние электроны мене прочно связаны с ядром.

Двигаясь по периоду энергия ионизации плавно увеличивается слева направо.

Зависимость энергии ионизации от заряда ядра

Сродство к электрону – изменение энергии при приобретении дополнительного электрона атомом вещества в газообразном состоянии. При движении по группе вниз сродство к электрону становится менее отрицательным вследствие эффекта экранирования.

Зависимость сродства к электрону от заряда ядра

Электроотрицательность  — мера того, насколько сильно атом стремится притягивать к себе электроны связанного с ним другого атома.

Электроотрицательность увеличивается при движении в периодической таблице слева направо и снизу вверх. При этом надо помнить, что благородные газы не имеют электроотрицательности.

Таким образом, самый электроотрицательный элемент – фтор.

зависимость электроотрицательности от заряда ядра

На основании этих понятий, рассмотрим как меняются свойства атомов и их соединений в таблице Менделеева.

Итак, в периодической зависимости находятся такие свойства атома, которые  связанны с его электронной конфигурацией: атомный радиус, энергия ионизации,  электроотрицательность.

Рассмотрим изменение свойств атомов и их соединений в зависимости от положения в периодической системе химических элементов.

Неметалличность атома увеличивается при движении в периодической таблице слева направо и снизу вверх. В связи с этим основные свойства оксидов уменьшаются, а кислотные свойства увеличиваются в том же порядке — при движении слева направо и снизу вверх. При этом кислотные свойства оксидов тем сильнее, чем больше степень окисления образующего его элемента

По периоду слева направо основные свойства гидроксидов ослабевают,по главным подгруппам сверху вниз сила оснований увеличивается. При этом, если металл может образовать несколько гидроксидов, то с увеличением степени окисления металла, основные свойства гидроксидов ослабевают.

По периоду слева направо увеличивается сила кислородосодержащих кислот. При движении сверху вниз в пределах одной группы сила кислородосодержащих кислот уменьшается. При этом сила кислоты увеличивается с увеличением степени окисления образующего кислоту элемента.

По периоду слева направо увеличивается сила бескислородных кислот. При движении сверху вниз в пределах одной группы сила бескислородных кислот увеличивается.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.